FMS/DsBs 2018

Testing treatment equivalence in a survival setting Joint work with Julie K. Furberg and Thomas Scheike

Christian Pipper

E-mail: tpbdk@leo-pharma.com

Preliminaries

Setting

Randomized clinical trial with two treatment arms and time from randomization to event of interest as endpoint.

Objective

To assess if the difference in event progression between treatment arms is small enough to be clinically irelevant.

Objective formalized

Let T_m , m = 0,1 denote the time from randomization to event for a person in treatment arm m and let $S_m(t) = P(T_m > t)$ denote the survival functions. Then we are seeking to test:

$$H_0: \sup_{t\geq 0} |S_0(t) - S_1(t)| \geq \delta, \ H_a: \sup_{t\geq 0} |S_0(t) - S_1(t)| < \delta,$$

The traditional approach

Assume Cox regression

$$S_1(t)=S_0(t)^{ heta}, \ t<\infty,$$

where θ denotes the hazard ratio

- $\sup_{t \ge 0} |S_0(t) S_1(t)| = \sup_{u \in [0,1]} |u u^{\theta}|$
- maximal distance is attained at $\theta^{\frac{1}{1-\theta}}$ and is symmetric in $\log(\theta)$
- H_0 Equivalent to testing

 $ilde{H}_0: |\log(heta)| \geq \log(1+arepsilon),$

where $\delta = (1+\varepsilon)^{-\frac{1}{\varepsilon}} - (1+\varepsilon)^{-\frac{(1+\varepsilon)}{\varepsilon}} \xrightarrow{\epsilon} 0$

A practical challenge

- So far we have forgotten all about end of follow-up and assumed infinite follow-up.
- In practice we always have a finite end of follow-up τ .
- This implies that we only have data evidence to assess equivalence of event progression up to end of follow-up

$$H_0^{ au}: \sup_{t\in[0, au]} |S_0(t) - S_1(t)| \ge \delta, \ H_a^{ au}: \sup_{t\in[0, au]} |S_0(t) - S_1(t)| < \delta.$$

- We can of course close our eyes to this and follow the traditional strategy.
- The consequence ,however, will be that we may fail to declare equivalence solely based on our model beliefs beyond end of follow-up $(H_0^{\tau} \subseteq H_0)$
- The cautious would claim that we can never reject H_0 unless we know that $\max(S_0(\tau), S_1(\tau)) < \delta$.

A solution

• Assume Cox regression until end of follow-up:

$$S_1(t)=S_0(t)^ heta, \ t< au.$$

Show that

$$\begin{split} m_{\tau} &= \sup_{t \in [0,\tau]} |S_0(t) - S_1(t)| \\ &= \left| \max\left\{ S_0(\tau), \theta^{\frac{1}{1-\theta}} \right\} - \max\left\{ S_0(\tau), \theta^{\frac{1}{1-\theta}} \right\}^{\theta} \right|. \end{split}$$

 Base assessment of H^τ₀ directly on m_τ

A solution: continued

• Estimate m_{τ} by plugging in the KM estimate of $\hat{S}_0(\tau)$ and the hazard ratio estimate $\hat{\theta}$ from Cox regression.

Show that

$$\sqrt{n}(\hat{m}_{\tau}-m_{\tau}) \stackrel{\mathcal{D}}{\rightarrow} \mathcal{N}(0,\xi^2),$$

where ξ can be consistently estimated.

Test equvivalence by

$$Z = rac{\sqrt{n} \cdot (\hat{m}_{ au} - \delta)}{\hat{\xi}}$$

and reject H_0^{τ} when

 $Z < q_{\alpha}$,

where q_{α} denotes the α -quantile in the standard normal distribution.

Assessing performance by simulation

•
$$S_0(t) = exp(-t), \ \theta = 1.5, \ \tau = 0.2$$

•
$$\delta = 0.135$$

• $m_{ au}=0.078,\,m_{\infty}=0.148$ so $H_0^{ au}$ is false and H_0 is true

Sample size, n	P(reject $H_0^ au)$, Modified equivalence test	$P(reject H_0),$	
		Classical	
		equivalence test	
5000	1.000	0.013	
1000	0.711	0.029	
500	0.453	0.033	
200	0.231	0.039	
100	0.036	0.030	

Estimated probability of rejecting the null hypothesis.

We loose out on equivalence by trying to assess equivalence beyond end of follow-up based solely on model beliefs.

A challenge about model assumptions

Consider the following example on surival of 90 gastric cancer patients 1:1 randomly assigned to two treatment arrms

Survival: Cox regression

8/14

A non-parametric equivalence test

For situations such as the Gastric cancer example a non-parametric equivalence test would be attractive

Simple idea

To assess H_0^{τ} simply use:

$$\hat{m}_{ au} = \sup_{t \in [0, au]} |\hat{S}_0(t) - \hat{S}_1(t)|,$$

where \hat{S}_m denotes the Kaplan-Meier estimator in the *m*th treatment arm.

Theoretical Challenge

The asymptotic distribution is very complicated!

Asymptotics: Preliminaries

• Denote
$$f_n(t) = \hat{S}_0(t) - \hat{S}_1(t)$$
, $f(t) = S_0(t) - S_1(t)$,
 $G_n(t) = \sqrt{n} \{ f_n(t) - f(t) \}$

- Note that G_n converges to a tight zero mean Gaussian process \mathcal{W} with a variance/covariance $\xi(s \wedge t)$ that can be consistently estimated by $\hat{\xi}(s \wedge t)$
- For a bounded function g on [0,τ] denote the signed sets of extremal points by

$$\mathcal{E}^{\pm}(g) = \{s \in [0,\tau] | g(s) = \pm \sup_{t \in [0,\tau]} |g(t)|\}.$$

10/14

Asymptotics: Result

For the non-parametric estimator of m_{τ} the following asymptotic result holds:

$$\sqrt{n}(\hat{m}_{\tau} - m_{\tau}) \stackrel{\mathcal{D}}{\rightarrow} \max[\max_{t \in \mathcal{E}^+(f)} \{\mathcal{W}(t)\}, \max_{t \in \mathcal{E}^-(f)} \{-\mathcal{W}(t)\}]$$

For the special case $\mathcal{E}^{\pm}(f) = \{t^*\}$, where f has exactly one extremal point, the following asymptotic result holds:

$$\sqrt{n}(\hat{m}_{\tau}-m_{\tau}) \xrightarrow{\mathcal{D}} \mathcal{N}(0,\xi(t^*)).$$

Moreover, if $f(t^*) \neq 0$, then for any sequence $t_n^* \in \mathcal{E}^{\pm}(f_n)$ we have

$$t_n^{\star} = t^{\star} + o_P(1)$$

and a consistent estimator of $\xi(t^*)$ is given by $\hat{\xi}(t_n^*)$.

Constructing a valid α -level equivalence test

• Assess equivalence by

$$Q = \frac{\sqrt{n}\{\hat{m}_{\tau} - \delta\}}{\sqrt{\xi(\hat{t}_n^{\star})}},$$

where t_n^{\star} is the smallest extremal point

• Reject H_0^{τ} when

$$Q < q_{\alpha}$$

where q_{α} denotes the α -quantile in the standard normal distribution.

- ullet One may show that this is an asymptotically valid lpha-level test
- It is strictly below α level when there is more than one extremal point in $\mathcal{E}^-(f) \cup \mathcal{E}^+(f)$

Testing equivalence for the Gastric cancer example

- With $\delta = 0.2$ We compute Q = 1.72 corresponding to a p-value of $\Phi(Q) = 0.95$.
- According to this test there is no evidence of equivalence.
- This we would also expect from looking at the KM-curves
- Using our Cox based proposal we compute Z = -1.96 corresponding to a p-value of Φ(Z) = 0.025.
- According to this test there is evidence of equvialence
- This we would definitely not expect from looking at the KM-curves!

- We have proposed a Cox based equivalence test that incorporates end-of-follow-up
- It has the advantage of only assessing equivalence during the follow-up period instead of basing assessment on modelling beliefs beyond data evidence.
- We have also proposed a simple (to understand) non-parametric test that is applicable when modelling assumptions such as proportional hazards are not appropriate
- Hopefully we have helped raise awareness that end-of-follow-up should be an integral ingredient in equivalence testing based on time to event data :-)

- We have proposed a Cox based equivalence test that incorporates end-of-follow-up
- It has the advantage of only assessing equivalence during the follow-up period instead of basing assessment on modelling beliefs beyond data evidence.
- We have also proposed a simple (to understand) non-parametric test that is applicable when modelling assumptions such as proportional hazards are not appropriate
- Hopefully we have helped raise awareness that end-of-follow-up should be an integral ingredient in equivalence testing based on time to event data :-)

- We have proposed a Cox based equivalence test that incorporates end-of-follow-up
- It has the advantage of only assessing equivalence during the follow-up period instead of basing assessment on modelling beliefs beyond data evidence.
- We have also proposed a simple (to understand) non-parametric test that is applicable when modelling assumptions such as proportional hazards are not appropriate
- Hopefully we have helped raise awareness that end-of-follow-up should be an integral ingredient in equivalence testing based on time to event data :-)

- We have proposed a Cox based equivalence test that incorporates end-of-follow-up
- It has the advantage of only assessing equivalence during the follow-up period instead of basing assessment on modelling beliefs beyond data evidence.
- We have also proposed a simple (to understand) non-parametric test that is applicable when modelling assumptions such as proportional hazards are not appropriate
- Hopefully we have helped raise awareness that end-of-follow-up should be an integral ingredient in equivalence testing based on time to event data :-)

- We have proposed a Cox based equivalence test that incorporates end-of-follow-up
- It has the advantage of only assessing equivalence during the follow-up period instead of basing assessment on modelling beliefs beyond data evidence.
- We have also proposed a simple (to understand) non-parametric test that is applicable when modelling assumptions such as proportional hazards are not appropriate
- Hopefully we have helped raise awareness that end-of-follow-up should be an integral ingredient in equivalence testing based on time to event data :-)

